On Padé Approximations and the Preservation of Quadratic Stability for Switched Linear Systems
نویسندگان
چکیده
It is well known that the bilinear transform, or first order diagonal Padé approximation to the matrix exponential, preserves quadratic Lyapunov functions between continuous-time and corresponding discrete-time linear time invariant (LTI) systems, regardless of the sampling time. The analagous result also holds for switched linear systems. In this note we show that, for any sampling time, diagonal Padé approximations of any order preserve quadratic Lyapunov functions for LTI systems and switched linear systems. Also, for a certain type of switching system where a quadratic Lyapunov function does not necessarily exist, yet the system is stable, we show that certain even ordered diagonal Padé transformations also preserve stability regardless of the sampling time. Other Padé approximations also preserve stability provided the sampling time is less than a readily computable upper bound.
منابع مشابه
On the preservation of co-positive Lyapunov functions under Padé discretization for positive systems
In this paper the discretization of switched and non-switched linear positive systems using Padé approximations is considered. We show: 1) diagonal Padé approximations preserve both linear and quadratic co-positive Lyapunov functions; 2) positivity need not be preserved even for arbitrarily small sampling time for certain Padé approximations. Sufficient conditions on the Padé approximations are...
متن کاملA new approach based on state conversion to stability analysis and control design of switched nonlinear cascade systems
In this paper, the problems of control and stabilization of switched nonlinear cascade systems is investigated. The so called simultaneous domination limitation (SDL) is introduced in previous works to assure the existence of a common quadratic Lyapunov function (CQLF) for switched nonlinear cascade systems. According to this idea, if all subsystems of a switched system satisfy the SDL, a CQLF ...
متن کاملEssentially Negative News About Positive Systems
In this paper the discretisation of switched and non-switched linear positive systems using Padé approximations is considered. Padé approximations to the matrix exponential are sometimes used by control engineers for discretising continuous time systems and for control system design. We observe that this method of approximation is not suited for the discretisation of positive dynamic systems, f...
متن کاملOn Padé approximations, quadratic stability and discretization of switched linear systems
In this note we consider the stability preserving properties of diagonal Padé approximations to the matrix exponential. We show that while diagonal Padé approximations preserve quadratic stability when going from continuous-time to discrete-time, the converse is not true. We discuss the implications of this result for discretizing switched linear systems. We also show that for continuous-time s...
متن کاملPreservation of common quadratic Lyapunov functions and Padé approximations
It is well known that the bilinear transform, or first order diagonal Padé approximation to the matrix exponential, preserves quadratic Lyapunov functions between continuous-time and corresponding discrete-time linear time invariant (LTI) systems, regardless of the sampling time. It is also well known that this mapping preserves common quadratic Lyapunov functions between continuous-time and di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009